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ABSTRACT

This report describes a new approach to the modeling
of eclipsing binary star systems. Modern observational and
analytical tools, including photomultiplier tubes, extremely
stable voltage supplies and amplifiers, and digital computers,
provide the possibility of obtaining and analyzing highly
accurate light versus time curves of such eclipsing stars.

The analysis of eclipsing binary stars provides our
primary source of knowledge about the physical properties of
stars - mass, radius, luminosity, density and intensity
gradients.

Currently, the main limitation on photometric
accuracy 1is the variability of the properties of the earth's
atmosphere. Telescopes located in space should be able to
provide photometric accuracy which is limited only by the
intrinsic capability of the photon detectors.

The current approach to analyzing eclipsing binary
light curves is with a model developed more than half a
century ago. Modern observations are approaching an accuracy
greater than that of this model, and space-based observations
will far exceed the precision of this technique.

The model described in this report takes advantage
of a digital computer and thus allows a reduction in the number
of simplifying assumptions. The validity of this model is
tested through analysis of numerical integration errors, com-
parison with the spherical model, parametric studies, and
application to observational data. It is concluded that the
model is a valid representation of eclipsing systems, and that
it is a useful tool for the analysis of such systems.

SEE REVERSE SIDE FOR DISTRIBUTION LIST




BELLCOMM, INC. ™™- 71-1011-4

DISTRIBUTION

COMPLETE MEMORANDUM TO COVER SHEET ONLY TO

CORRESPONDENCE FILES: J. P. Downs

BA-146 (8-64)

OFFICIAL FILE COPY

plus one white copy for each
additional case referenced

TECHNICAL LIBRARY (4)

NASA Headquarters

0. Armstrong/MTX
E. Culbertson/MT
J. Donlan/MH

W. Hall/MTG
Hall/MT-2

A. Reegan/MA-2
S. Lyman/MR

K. Oertel/sG
Quintrell/DHC-4
G. Roman/sSG

J. W. Wild/MTE

» . »

ZEordHdodEnn s

GSFC

K. L. Hallam/613
S. Sobieski/613
W. L. Stroud/110
A, B. Underhill/613

MSC

————

K. Henize/CB
Y. Kondo/TG4
T. L. Page/TG4

University of Florida

J. E. Merrill
F. B. Wood

University of South Florida

E. J. Devinney
R. E. Wilson

R. L. Wagner

COMPLETE MEMORANDUM TO

University of Georgia

E. G. Reuning

Dominion Astrophysical Observatory

G. Hill

University of Wisconsin

J. E. Forbes

University of California, Berkeley

H. S. Spinrad

University of Pennsylvania

R. H. Koch

U.S. Naval Observatory
Flagstaff Station

R. L. Walker, dJdr.

University of California at
L.os Angeles

M. Plavec



BELLCOMM, INC.
Subject: An Analytical Model of

Eclipsing Binary Star
Systems - Case 105-9

DISTRIBUTION LIST

(cont'd)

Bellcomm, Inc.

Boysen, Jr.

Buffalano

Hagner

Hinners

Ling

London

Menard

Orrok

Timko

. Wilson

All Members, Dept. 1011, 1013, 2015
Department 1014 Supervision
Department 1015 Supervision
Center 201 Supervision
Department 1024 File

W g

2o mo=zor

MEanndgs

Author:

bD. B.

Wood



BELLCOMM, INC.
955 L'ENFANT PLAZA NORTH, SW.  WASHINGTON, D.C. 20024

SUBJECT: An Analytical Model of Eclipsing DATE:  April 16, 1971
Binary Star Systems - Case 105-9
FROM: D. B. Wood

T™™M=~71-1011-4

TECHNICAL MEMORANDUM

I. INTRODUCTION

Knowledge about the physical properties of stars is
crucial to understanding their energy generation, radiative
processes, and evolutionary cycle. Such quantities as mass,
radius, surface temperature, luminosity, density gradient,
variation in intensity across the surface, etc. are known in
detail for only one star - our sun. The main source of informa-
tion for other stars comes from the study of various classes
of double stars - two stars in orbital motion about their common
center of gravity.

* Visual double stars are widely enough separated so
that their orbital motion, projected on the "plane of the sky",
may be followed. Separations vary from several seconds of arc
down to the resolution limit set by the telescope and the Earth's
atmosphere. Periods vary from about five years up to thousands
of years. If the distance to the double star system can be
determined, then the masses and intrinsic luminosities (absolute)
magnitudes) can be determined.

+ Spectroscopic binary stars are double stars which have
a large enough orbital velocity component in the line of sight
to produce a measurable change in the Doppler shift of lines in
the spectrum. Orbital velocities vary from nearly 500 km/sec
down to the limits of measurements, a few km/sec. Periods range
from a few hours to more than a decade. A few spectroscopic
binary stars are visual double stars, but the vast majority are
unresolvable. If the two stars are quite comparable in bright-
ness, then each star can be detected by the periodic doubling
of the spectral lines, as one star approaches us and the other
recedes. In most cases, however, only one of the two stars is
visible spectroscopically and one sees its absorption lines
periodically shifting redward and blueward. Not much information
is available from these single-line (one spectrum) binaries, but
the masses of double-line (two spectrum) binaries can be deter-
mined if the inclination of the plane of the orbit can be
determined. The inclination (angle between the orbital plane
and the plane of the sky) can be found if the spectroscopic
binary is also a visual double star or an eclipsing binary star.
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Eclipsing binary stars are spectroscopic binary stars
which have orbital plane oriented in such a way (inclination
near 90°) that they nearly include the earth. Hence the ob-
served luminosity of the unresolved stars is periodically
reduced as the stars alternately eclopse each other. The
study of the light curves (intensity vs time) of eclipsing
binaries gives us our greatest knowledge about the physical
properties of stars. Figure 1 shows a typical light curve.

The ordinate of a light curve may be expressed in actual time
units or, equivalently, in orbital longitude (o0° to 360°) or
phase (o to 1). We can determine the relative radii of the two
stars (in terms of their separation), their physical distortion
(which is related to density distribution), their limb darkening

(decrease of intensity from the center to the limb), their
relative brightness, and such interactive phenomena as re-
flection (the heating of one star by the other}). If the star

system is a double-line, spectroscopic, eclipsing binary, the
radii can be expressed in absolute units and the masses
determined.

The experimental precision of these light curves depends
on instrument sensitivity and on night to night reproducibility.
The introduction of photomultiplier tubes and stable electronic
has improved precision until it is now limited by the variability
of the atmosphere. Space-based telescopes such as those planned
for the shuttle and space station program will provide a major
advance in data gathering, eliminating atmospheric limits
associated with Earth-based telescopes. This report describes
a method of analyzing light curves with great precision.

IT. BACKGROUND

The traditional approach to the solution for the
physical parameters of eclipsing binary stars has been based on
the mathematical simplicity of the "spherical model"”, in which

the stars are assumed to be perfect spheres. H. N. Russeli(l7)
developed this elegant approach to what would have otherwise
been an intractable problem. Many methods of application of
this model have been developed; the most notable being that of

Russell and Merrill(lg) and that of Kopal(s). The Kopal method
is an iterative procedure and lends itself well to computer

(7) (6)

application (e.g., Jurkevich , Huffer and Collins ). These (16)
methods require either extensive tables, as generated by Merrill'

(21,22)

and Tsesevich , or special functions generated by the com-

puter during solution (Jurkevich(7) and Linnell(lo)). In all
cases, however, the use of the computer has still been tied to
the spherical model.
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A more powerful application of the computer would be
to discard the spherical model and the dubious procedure of
rectification* by taking into account in a more exact manner
the complexities of binary stars. The usual perturbations of
the spherical model can be represented by straight-forward
physical models. Thus it is now reasonable to build, in a
computer, a detailed model of an eclipsing binary system and
study with great accuracy the effects of non-sphericity, gravity
brightening, reflection, limb darkening, and orbital eccentricity.
Recently, this straight-forward approach has been investigate

(14) (5) (3)

in various aspects (Lucy ;, Hill and Hutchings , Cochran

).
The procedure discussed herein was first described

conceptually at the Berkeley meeting of the IAU(24). However,

the approach proved too ambitious for computers of that era.

ITT. THE MODEL

This model of eclipsing binary systems takes into
account the best understood geometric and photometric distor-
tions, including limb darkening, gravity brightening, and
reflection. Other important perturbations, such as gas-
streaming, are much more complex in nature and are not con-
sidered at this time.

The photospheric surface of each star is assumed to
be representable by a tri-axial ellipsoid, with the major axes
pointing toward each other at periastron. The orbit may be
eccentric, and the stars rotate in their orbital plane with a
period equal to the orbital period. It is presumed that tidal
forces between two close stars will have forced the period
synchronism and the coplanar rotation. The model is described
by the following parameters:

Orbital Parameters

Period of revolution p
Time of conjunction Tc
Semi-major axis of orbit RO

*An important aspect of the spherical model is the reduction
of distorted stars to spheres by "rectification". The out~of-
eclipse light variation is analyvzed for its Fourier harmonics,
and the entire light curve is rectified by the addition of and
division by appropriate Fourier coefficients. Rectification
also removes reflection effects.
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Orbital eccentricity e
Longitude of periastron w
Inclination i

Geometric Parameters

Semi-axes of star "A" anr bA' Can

Semi-axes of star "B" ag bB’ cp
Photometric Parameters

Surface intensity (defined below) TA, fé

Limb darkening coefficient Unr Ug

Gravity brightening coefficient Var Vg

Reflection coefficient (albedo) War Wy

A. Orbital Parameters

The orbital parameters are defined in the usual sense
for binary star orbits (see Figure 2). In order to avoid the
ambiguity in w as e approaches zero, e and w are always used in
the combinations e sin w and e cos w.

B. Geometric Parameters

Chandrasekhar(l) showed that, to third order in v¥*,
a tidally distorted rotating polytrope could be approximated
by a tri-axial ellipsoid. For very close stars (v ~ 1/2),
ignoring higher terms in v produces deviation from theory in
the semi-major axis of about 6% for stars of equal mass.

It is important to note three important considerations
which relate to the use of a tri-axial ellipsoid in this model.
First, there is no relationship between the use of an ellipsoid
in this context and the use of the "ellipsoidal model" in recti-

fication. 1In the latter case the isophotes are concentric,

similar ellipses, which is far from the real situation (see

Figure 3). Second, there is no a priori reason to assume that
%y = radius of unperturbed star

‘separation of centers
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the photospheres of distorted, turbulent stars are any better
represented by another form, such as the often~cited Roche
model. Other, complex, configurations are discussed in the

work of Kopal(g), Lucy(l3), and Martin(ls), which suggests

there is a variety of proposed star shapes to choose from.

Third, given this variety of shapes, the ellipsoid is very
attractive from a computational point of view. The fact that

an ellipsoid projects on the plane of the sky as an ellipse

is particularly useful in performing accurate eclipse integrations.

The two stars are not identified in the usual way as
"larger" and "smaller", but rather as star "A" and star "B".
Star A is eclipsed at the deeper eclipse and is considered to
be the central star about which B revolves.

It is convenient to replace the six geometric param-
eters (the star axes) with six dimensionless parameters.

a, k, €

EAI BI EA’ CBI

which are related to the actual axes by the following:

aA = aR

aB = kaRO
b, = ¢.aR

A A
q ° (1)
DB = eBkaRO
_ 2

Cp = (1 + gA)eAaRo

c., = (l + )ezkaR

B BB o)

The e are the ellipticities in the a-b (orbital) plane and the
r measure how much the ellipticity in the b-c plane differs
from that. The parameter k is defined in a slightly different
manner than it is for the spherical model. By defining k as
the ratio of the semi-major axis of star B to that of star A,
k can be greater than unity if star B is the larger. Hence
primary eclipse is an occultation if k > 1 and a transit if

k < 1. The semi-major axis of the orbit, Ro’ is used as the

unit of length, so that "a" represents the semi-major axis of
star A in dimensionless units.
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From the work of Chandrasekhar(l) we could express
the six axes of the stars as functions of a, k, the mass ratio,
and the polytropic indices. For generality, however, in this
model the additional degrees of freedom provided by separate
Ear €37 Car and iy are retained in lieu of the mass ratio.

The star shapes are described in greater detail in Appendix A.
C. Photometric Parameters

Limb darkening is expressed here by the usual linear
law

I = Io(l - u+ ucos vy) (2)

where y is the foreshortening angle and u is the limb darkening
coefficient. IO is the intensity of the "sub~earth" point,

where the line of sight from the observer is normal to the stellar
surface and y = 0. For a distorted star, this point is generally
not at the center of the apparent disk. Isophotes, contours of
constant y, are not similar ellipses for an ellipsoidal star,

as was shown in Figure 3.

The relative surface intensities of the two stars
cannot be uniquely defined in the same way as is possible for
spherical stars, since the apparent brightness is constantly
changing with orbital phase. Thus the intensity ratio, j, is

defined at time = TQ = Tc + P/4 as

where I is the value of IO at quadrature.*
The gravity brightening coefficient, v, is defined to
be like limb darkening, so that

I, = I(L - v+ v %) (4)
r

*For circular orbits TQ is time of quadrature. Although

this is not generally true for eccentric orbits, the term
"guadrature” will be used to describe TC + P/4.
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where r is the local radius_and ¥ is radius to the sub-earth

point at quadrature, where I is defined. The derivation of
Equation (4) is outlined in Appendix B. The parameter v is
the negative of b as defined by Kopal(8).
directly as local gravity(27), then v is approximately -4. If
flux is less sensitive to local gravity, as suggested by

(12)

Lucy , then v may be more like -1.5.

If local flux varies

Two stars very close together will heat each other
so that the intrinsic radiation, IO, is in effect augmented

by radiation which is "reflected". In the present model, reflec-
tion effect is included as an albedo parameter, w, so that the
total reflected light is just w times the integrated incident
light. 1In any restricted spectral region, w may be more or less
than unity, since reflection will generally involve a redistri-
bution of spectral energy. Earlier treatments of reflection

have contained many simplifying assumptions due to the complex
geometry which was used, especially in the penumbral regions
where the source star is partially below the local horizon (e.g.,

Russell(lg) and Kopal(8)). The geometric complexities are
quickly removed, however, by a simple vector treatment of the

problem (Chen and Rhein(Z) and Wood(25)).

At the present, a more accurate astrophysical treat-
ment of reflection, such as that used by Hill and Hutchings(5}
is not considered to be useful. The computation of reflection
has such a major impact on the running time of any computer
program which calculates light curves, that low-accuracy inte-
gration schemes must be used. The trade-off is generally
between accurate integration of a simple reflection model or
poor integration of a sophisticated reflection model. In truth,
neither model may represent the true effect in a turbulent
atmosphere.

The photometric parameters are described in more
detail in Appendix B.

D. System Luminosity

The total observed luminosity of a star is thus given
by an integral over the apparent disk:

L = jp(IO + I*) (1 - u + u cos v) da , {(5)
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where Io is the normal emergent intensity given by Equation (4)

and I* is the normal component of the reflected intensity, given
by

I* = wL*/271(1 - u/2). (6)

L* is the incident flux from the other star, found from an
Eguation like (5), but which takes into account the unigue

geometry (see Appendix B). The total system luminosity at
any time t is

LTOT(t) = LA(t) + LB(t) - LE(t) {7)

where the light lost in eclipse, L is found from Equation (5),

EI
integrated over the overlapping area. The system luminosity
is normalized at quadrature; LTOT(TQ) = LA(TQ) + LB(TQ) = 1.

Because of this normalization, both surface intensities, TA
and IB’ are determined by j (Equation (3)).

IV. VERIFICATION OF THE MODEL

It is impossible to vnrove the "accuracy" of the model,
but its validity can be checked in a variety of ways, including
application to real eclipsing systems.

A. Accuracy of Numerical Integration

Numerical integrations are performed using the Gauss
gquadrature method. Table 1 shows the accuracy of the integration
compared to the exact integration for a spherical star¥*.
Numerically, the same accuracy should prevail for distorted
stars, however precise analytic analysis is not possible in
general. For an undarkened ellipse, the intensity is just
mab, and the accuracy of numerical integration agrees with
that above. In the general case, we can express the error
(in magnitudes) of the coarser integrations compared with the
16 x 16 integration. In Table I we have shown the mean sys-
tematic error (with respect to 16 x 16 integration) and the
root mean square scatter about this mean. Since 10-point
integration provides adequate accuracy for any graphical pre-
sentation, all results discussed in this paper will be based
on that integrational accuracy.

*For a spherical star of radius r and no reflection,

Equation (5) is exactly integrable to L = Ionrz(l - u/3).
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B. Comparison with the Spherical Model

Using the alpha-function tables of Merrill(lG) primary
and secondary eclipses were generated for a pair of limb-
darkened spherical stars. The comparison with this model is

shown in Table 2, where we see the largest deviation is about
.0003.

It is possible to use this model to generate alpha-
functions, using the relationships (in Merrill's notation)

oc
aoc(x,k,p) _ 1 - 1
s (8)
tr
tr _ 1 -1
o (x,k,p) = m .
g
For primary eclipse as a transit, in the present notation
Egquations (8) become
Oﬂoc(ulkrp) = """“"“‘""l ; L
B (9)
tr 1 -1
a " (u,k,p) = EX?TETFT .
L', the luminosity at time t in primary eclipse, and L", the
luminosity at time t + P/2 in secondary eclipse are calculated
from Equation (7). 1(u,k) is taken from Merrill's tables. Time

t was chosen to provide even tabular values of p for comparison
with tables. Spot checks of alpha functions generated in this

manner with tabulations of Merrill(lG) and Linnell(ll) for u = .6
show deviations of no more than + .0002. ©No better agreement
can be expected with the integration accuracy used.

C. Parametric Studies

Examination of the effects of variation of isolated
parameters can provide a great deal of insight into the operation
of the model. Such investigations have proven invaluable in
developing and "debugging" the computer program. A "standard”
light curve (Figure 4) is adopted with the parameters listed
in Table III, and we will examine the sensitivity to changes
in a number of the orbital parameters.
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Figure 5 shows the combined effects of ellipticity
and gravity brightening. An increase in the gravity effect
(a more negative v) looks very much like increased ellipticity.
Because of this close coupling, it will probably be necessary
to determine v from theory in most cases.

Figure 6 shows the effect of variation of the ratio of
the radii through unity. The curve labeled 0.9 is a transit in
primary eclipse, and the other curves are occultations. A change
in k affects the depths of both eclipses and alters their widths.

Figure 7 shows the effect of reflection. The influence
on the shoulder of primary eclipse is not perceptable on this
scale, since the fainter star has a lesser influence on the
brighter star. Curves are labeled by the value of w/27n(1 - u/2).
Thus 0.2 corresponds to an albedo of 0.88, and 0.4 to an albedo
of 1.76. Figure 8 shows a detail of the shoulders of a much
closer binary system. The unit albedo curve is about 0.03
magnitude brighter at phase .35 than at phase .15. Reflection
effect introduces this distinctive asymmetry into the light
curve.

Figure 9 shows the detail of the bottom of primary
and secondary eclipse for a variety of limb darkening param-
eters. The depth of primary eclipse increases as the limb
darkening of the secondary star is increased. The depth of
secondary eclipse is likewise coupled to the limb darkening
of the primary star. A novel feature is the shape of second-
ary eclipse (a transit) for zero limb darkening. For these
ellipsoidal stars, the eclipsed area actually passes through
a maximum about 0.01 in phase on each side of mid-eclipse.

Figure 10 shows the effect of variation of the radius
of the primary star. Since the ratio of radii is fixed, the
radius of the secondary star varies in the same sense. Eclipse
depth is unchanged, but there is a strong effect on eclipse
width. ©Notice that a 10% change in radius changes the steep
portion of primary eclipse by more than 0.05 magnitude.

Figure 11 shows the effect of variation of the relative
surface intensities. The brighter the secondary star, the more
nearly equal are the eclipses. Notice also the effect upon
reflection. For j = .9 the shoulder before primary eclipse
is raised and that before secondary depressed.

Figure 12 shows the detail of the bottom of primary
and secondary eclipse for small changes of inclination near 90°.
As long as eclipse is total, its depth is unchanged. As long
as limb darkening on the secondary star is not zero, the transit
eclipses are changed in depth by a change in inclination.
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D. Comparison with Observed Light Curves

The best test of the model is its ability to fit
real, observed light curves. Here we show the results of
trial-and-error fitting to observations of several eclipsing
binaries.

1. VS Hydrae

The observations of VZ Hydrae were taken from Walker<23}m
His light curve is shown in Figure 1. There is no obvious inter-
action between the components, so the stars are taken to be
spheres. Starting with Walker's elements, the parameters were
adjusted to improve the fit in primary eclipse. The final fit
to the V observations* is shown in Figure 13, and the elements
listed in Table III. It is not surprising, but comforting to
see that this model works for a real spherical system.

2. EG Cepheii

A more interesting test of the model is provided by

(4)

application to this close system as observed by Cochran .
The V light curve shows no evidence of reflection effect.
Figure 8 showed the effect of reflection for a system like

EG Cep. The hotter star heats the facing side of the cooler
star and this hot side comes increasingly more into view past
phase .25, until it is eclipsed by the hotter star. Thus the
system is appreciably brighter at phase .35 (and .65) than at
phase .15 (and .85). This is not the case for EG Cep, so the
V albedo is taken to be zero. Figure 14 shows the fit to the
observations using this model and the parameters of Table III.

3. V1143 Cygni (HR 7484)
A good test of the ability of the model to handle

eccentric orbits is provided by the system V1143 Cygni, as ob-
(20)

served by Snowden and Koch . Their published elements were
hardly changed to provide the fit shown in Figure 15. The
values of e sin w and e cos w from Table IITI yield e = .542,

and w = 48.3°, ©Note that k > 1, so the comparable values
normally published would be a = .061 and k = .902.

*"y" refers to a specific yellow filter passband in the
standard (U,B,V) photometric system.
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4., RU Ursa Minoris

Blue observations of RU Umi(26) were fit as shown in
Figure 16 by the elements in Table III. This is a very close
system which is very much like W Ursa Majoris systems. The
normal spherical model is quite inadequate for handling such
systems.

V. APPLICATION

At this point, we have established that the model
reproduces the spherical model exactly for spherical stars,
and that the model produces credible results for distorted
systems. The model was based on a number of assumptions, such
as synchronism of rotation and revolution. Using the existing
model as a basic framework upon which to build, various eifects
not inherently part of the model can be investigated. In this
manner, it may be possible to gain more insight into such effects
as non-linear limb darkening, non-synchronism of rotation,
atmospheric eclipses, reflection with the hot-spot not at the
sub-stellar point, etc.

Another important application of the model will be
in the actual solution of eclipsing systems. 1In this paper,
real systems have been fit with a trial-and-error procedure.
An algorithm which will allow automated solution in the com-
puter is under development.

A. Atmospheric Eclipses

For a test of the effect of a "fuzzy" star edge, a
star was given an absorbing atmosphere, specifiable by a scale
height. Thus a light ray reaching the observer from the eclipsed
star is attenuated:
-T

J = Joe (10)

where JO is the emitted intensity and J is the received inten~
sity. The optical depth is given by

T =T e-r/h (11
(o}

where L is the optical depth at the "surface", assumed to be

4/3 for the limb. The apparent distance of the ray above the
limb is given by r, and h is the scale height. For h/a * .001, the
effect is hardly perceptable (for k >> .001l). Figure 17 shows
the effect of this absorbing atmosphere for h/a = .1 and h/a = .01.
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B. Phase of Reflection

The unequal heights of maxima observed in W Ursa
Majoris systems are a particular problem to explain. Orbital
eccentricity combined with reflection could produce unegual
maxima. However, W UMa systems have nearly circular orbits,
so such an effect would be very small. What these systems
reguire to explain them is an effect that is different at
each quadrature; the stars need to be hotter on one side than
the other. A simple way to produce this effect in the model
is to introduce a phase shift in the reflection effect. What
would be the effect if Coriolis forces moved the "hot spot”
away from the sub-stellar point? The asymmetry of this effect
depends strongly on the relative intensities, j, and on the

relative albedos, W and Wge An example of the effect is

shown in Figure 18 for reflection lead or lag of 10° and the
elements indicated in Table III for "Phase Shift". The maxima
differ in height by about 0.016 magnitude, and reverse roles
dependent upon phase lead or lag. Normalization at phase .25
has forced all the effect into the maximum following secondary
eclipse.

C. Skew Stars

The model assumes that the stars rotate in the orbital
plane with the major axes aligned. Figure 19 shows the effect
on the light if one star is inclined 5° to the orbital plane and
has the major axis out of alignment by 5°. The rising and
falling branches are made unsymmetric, but the heights of maxima
are preserved,

VI. RELATION TO PHYSICAL PARAMETERS

The physical parameters which describe a star are its
mass, radius, luminosity (energy output), temperature, density
gradient, chemical composition, surface gravity, atmospheric
turbulence, and others. These properties are determined through
the combined results of spectroscopy and photometry. In partic-
ular, let us see how photometric determination of the light curve
of an eclipsing binary can lead to the determination of the mass,
radius, luminosity and temperature of two stars.

As described in the introduction, our best hold on
these quantities is in the case of double-lined spectroscopic
eclipsing binaries. Through radial velocity measurements (in
km/sec) and application of Kepler's Law, we obtain R sin 1 in
km and (m, + )sin3 i in solar masses, where m

A" M8 ‘ ’ A
masses of the two stars. Thus the combination of this infor-
mation with the photometric solution gives us the stellar masses
and axes in absolute terms. As is shown in Appendix A, the mass
also is related to the stellar axes for close, interactive star
systems.

and mB are the
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The determination of luminosity and temperature is
assisted by eclipsing binary solutions. The luminosity of a
star i1s dependent upon its surface area and upon its temper-
ature. If Te is the effective temperature (i.e., the temper~

ature of a black body energy curve which most nearly replicates
the star's energy curve) then we can say

L «r Te . (12}

The radius, r, is determined from the eclipsing binary solution.
In the case of distorted stars, the calculation of surface area
is more complex. The effective temperature is determined from
spectrophotometry.

The following tabulation relates the model and physical
parameters:

Model Physical
. Parameters Parameters Remark
P, i, Tc, P, i, Tc’ Defines orbit shape and
orientation in space.
esinuw, e, w, RO P, Tc’ e, wy, RO can be

determined spectroscop-
ecosw, RO P P

ically.
a, k, €, ¢ al; unperturbed Related through theo-
radius retical expressions

[equation (A-2)].
g; mass ratio

j, u, v, w Te; effective Related through theo-
temperature retical astrophysics:
Te’ Pe’ Pg and <,

Pe; ei:g:ﬁgz define a stellar atmos-—
P phere, and that atmos-

P ; gas pressure pherg determines u, v, W

g and J.

«_ ; absorption

coefficient
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VII. CONCLUSIONS

Conceptually, the model described herein is superior
to the spherical model because it accounts in a more straight
forward way for the "photometric perturbations"” of the spherical
model. 1In addition, the model has passed all parametric tests
and has proven its ability to match observed light curves. We
conclude that the model is a valid representation of eclipsing
binary star systems, including very close systems.

Using this model as a tool, we can now attack the
following problems:

1) Determine model parameters for observed
systems, using an iterative least-sqguares
technique.

2) Examine the effects of the model assumptions
(e.g., coplanar rotation).

3) Examine the effects of other photometric
disturbances, such as extended atmospheres
and gas-streaming.

4) Examine the effect of more sophisticated
reflection calculations.

LB

1011-DBW-ulg D. B. Wood

Attachments
Appendices A-C
References
Tables I-III
Figures 1-22
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APPENDIX A

Ellipsoidal Star

1. Distorted Polytrope

A polytropic stellar model is one in which the radial
density distribution is described by an exponent, n, called the

polytropic index. Chandrasekhar(l) analyzed the distortions of
such polytropes under the influence of rotation and tidal inter-

action.

Let g be the mass ratio (perturbing star mass/perturbed

star mass), a, be the radius of the polytropic sphere before
distortion, and v be aO

R. Chandrasekhar showed that the deviations from the unperturbed
sphere (radius ao) could be expressed as

= 1 3 4 5 B
Gl - —6—(1 + 7QI)A2\) + qA3\) g qA4'\) + ...
o, = l(l + T7g)A,vT = gA,v + gA v5 +
2 6 2 3 4 4 s 0o
> (A-1)
1 3 3 5
o4 = g(l 2q)A2\) tgab T F .
= -1 5 3,3 5
Oy = 3(l + §q)A2v + §qA4v + ...

where oy is the extension in the equatorial plane toward the
perturbing star, o, is the diametrically opposite extension,

74 is the extension in the equatorial plane perpendicular to

oy and Oy and Ty is the polar extension (contraction). The
A, are weak functions of the polytropic index, and are all
near unity for the range of applicable indices (3 < n < 5).

If terms in v4

and higher are ignored, ¢, = o, and the star

1
is a triaxial ellipsoid with axes given by

2

expressed in units of the star separation,
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- 1 3

a = ao[l + —6—(1 + 7q)A2\> ]
1 3 $

= = — — \

b ao[l + 6(l 2q)A2v 1 (A-2)

_ _ 1 5 3
c =a [1 3(l + Eq)sz ]

J

The error in the length of the semi-major axis in this

ellipsoid approximation is approximately qv4. For extremely
close stars (v ~ .5) the error is about 6% for unit mass ratio.
Normally the value of v does not exceed .4, and the error for
unit mass ratio would be less than 3%.

2. Coordinate Transformation

In a coordinate system with axes fixed in the star,
the surface of the ellipsoidal star is given by

(x'/a)% + (y'/B)% + (2'/c)? = 1. (A-3)

To determine the stellar eclipsed or uneclipsed intensity as
seen by a distant observer, we are interested in the projection
of this star on the "plane of the sky"; that is a plane tangent
to the celestial sphere at the point where it is pierced by the
observer's line of sight. If we define the y-z plane as the
plane of the sky, with the observer on the -x axis, then the
equation of the ellipsoid becomes

sz + By2 + C22 + 2Dxy + 2Eyz + 2Fxz = a2b2c2 {(A-4)

where

N\

b2c2cosze'sin2i + azczsinze'sinzi + a2b2coszi

]
i

B = bzczsinze' + a2c2cosze'

C = b2c2cosze'coszi + azczsinze'coszi + a2bzsinzi

D = (bzc2 - azcz) sin6'cosf'sini (A2)
E = (bzc2 - a2c2) sind'cosd'cosi

F = (bzczcosze' + azczsinze' - azbz)sini cosi .
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6' is the angle that the star has rotated from the line of
sight (i.e., the angle between the projection of the -x axis
on the orbital (x'-y') plane and the major (+x') axis of the
star); i is the orbital inclination.

The cosine of the angle between the line of sight
and the normal to where it intersects the stellar surface
(limb darkening angle) is given by

cos y = (Ax + Dy + Fz)/T (A-6)

where

2 2

T = [x2(a% + D% + F?) + y2(8% + p2

+ E2) + 22(C2 + E2 + F2>

+ 2 xy(AD + BD + EF) + 2xz(AF + CF + DE) (A-7)

2yvz(BE + CE + DF)]]‘/2 .

+

To describe the star entirely in terms of plane-of-the-sky
coordinates, equation (A-4) is solved for x:

X = —QX{£~EE + -;:—[Ny2 + P22 + 2Ryz + S]l/2 (A-8)
where
N = D2 - AB b
P = F2 - AC

) (2-9)
R = DF - AE

S = Aazbzc2 .

The outline of the "apparent" star (i.e., the pro-

jection of the star on the plane of the sky) is formed by
setting cosy = 0 in Equation (A-6):

Ny2 + P22 + 2Ryz + S =0 . (A-10)
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This is an ellipse with axes given by

1/2
D 25
T 2 2 1/2

e -2+ 2R - o+

(A-11)
1/2

D 25
o s 2 2 172

[(P - N) + (2R) 7] - (P + N)

The integrations of Equation (5) are performed over
this ellipse for calculation of total intensity. Integration
of eclipsed intensity is over the area common to two intersecting
ellipses.
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APPENDIX B

Photometric Parameters

1. Limb Darkening

The linear 1limb darkening law (Equation (2)) is based
on solution of the transfer equation for the case of radiative
equilibrium in a stellar atmosphere which is, at least locally,
plane parallel. It is normal to define the stellar surface at
optical depth 2/3 (i.e., where the attenuation of radiation is

¢"2/3). In this case limb darkening is given by

I = IO(O.4 + 0.6 cos v) . (B-1)

Equation (2) is a generalization of this solution which is
linear, replacing the numerical coefficients with one general
coefficient, u.

2. Gravity Brightening

The local effective temperature of a star is pro-
portional to the local surface gravity:

T« g° . (B-2)

In 1924 von Zeipel(27)

Recently Lucy(lz) calculated that when convection occurs in
the outer layers of the star, 8 is more like 0.08.

showed that the exponent was 1/4.

We compare the local values of T and g to the mean
values over the star, T and g:

Tl/B _ Tl/B
T/ B

=94 -3 . (B-3)

g

The flux of radiation from the star, at a particular wavelength,
A, 1s given by the Planck law:
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5 cz/AT
J = 2hc™) (e - 1) (B~4)

From the Planck law we can write an expression for J/J, and
perform a Taylor expansion for T ~ T. In addition, equation
(B-3) can be expanded for T ~ T. If we eliminate the factor
(T - T)/T, which is common to these two series expansions,
and ignore higher order terms, we get

J/T %1+ y(g - g) (B-5)
g
where

c, eCZ/AT

Y= 85T o (B-6)
2
e - 1
(1)

From the work of Chandrasekhar the surface gravity

can be related to the radius:

— — (A, - 5
g-gzr:r ZA . (B-7)
r 2

Qi

where A, is that defined in Appendix A. If we let

2
A, -5
2
vV = y|{—— (B-8)

then we have the gravity brightening law

J=3(1L-v+vI . (B-9)
r

For convenience of the model, r and J are taken to be the
values at the sub-earth point at quadrature. Notice that
since A2 ~ 1, we can write

v Y _~48a (B=10)

1 -e 2
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where a = cz/AT. Thus v can be theoretically determined for
any A, 9given the effective temperature and the value of 8.

3. Reflection Effect

The geometry of the reflection effect is shown in
Figure 20. Consider the three unit vectors shown in the figure:
$l is the normal to area dAl on the reflecting star; 33 is the

vector directed from dAl to area dA2 on the source star: v

the normal to that area on the source star. For dA2 to be

visible from dAl (thus contributing to the reflection) the dot

product 31 . 33 must be positive and %2 . $3 must be negative.

The intensity received at dAl from dA2 is found from considering

is

2

the normal emergent intensity at dA2 [Equation (4)], the limb

darkening on the source star [Equation (2) with cos y = [§2 . §3]}g

inverse square reduction of intensity at da and the fore-

l'
shortening angle for the incident flux (from V. o v The

1 3) -

flux incident on dAl is thus given by

L v3

1
* = — ° ———— { e o
L .[]} 2[1 u, *+ u2|v2 v3]] 5 dA2 (B-11)

where d is the distance between dAl and dA2.

This energy is considered to be reflected isotropically
over a hemisphere with an albedo w. The portion of this energy
which is reflected normal to dAl is thus

I* = wlL*/Zn(l - ul/2) . {(B-12)

The process is reciprocal, so star A illuminates star
B and vice versa. Second order reflection is not included. That
is, I02 in Egquation (B-11l) is not augmented by light incident

from star "1".
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APPENDIX C

Orbital Mechanics

1. Basic Equations

The basic equations, which may be found in any

celestial mechanics text, are given below. The mean anomaly
igs defined as

M

2T
> (t—TO) (c~-1)

where TO is the time of periastron passage.
is defined as

The radius vector

R = Ro (l-e cos E), (C-2)

where Ro(zl) is the semi-major axis of the orbit and E is the
eccentric anomaly, related to M by

EF~e sin E = M (C~3)

The true anomaly is defined as (see Figure 21)

v = % - w + 6 (C—-4)

where 9, the orbital longitude, is measured from the line of

sight (8 = 0 at conjunction). The longitude of periastron, w,
is measured from the "entering" node, where the orbit crosses
to the observer's side of the plane of the sky.

The eccentric
and true anomalies are related by

cos v + e

cos E = l + e cos v
(C-5)
. \)l—e2 sin v
sin E =

l+e cos v
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2. Derivation

- Time of Periastron

At conjunction, t = Tc and 6 = 0, so from Equation
(C-4):

Vo= - w (C-6)

I
c 2

so that equations (C-5) become

cos B = sin w + e
c 1 + e sin w
) (C-7)
cos E = SOS w'VI - e
c 1 + e sin w
/
Thus at conjunction Equation (C-3) becomes
-1 sin w + e e CoSs u / 2 _ 27
cos {l + e sin w} 1+ e sin w Vi-e® = 7 (Te = T)
(C-8)

For the given e sin w, e cos w, Tc and P, Equation
(C-8) is used to calculate To. The proper quadrant for the

arccos 1is determined from the sign of

e cos w V1 - e2

e sin E = -
1l + e sin ow

(C-9)

+ Time Dependent Variables
Equation (C-3) is solved for E, using Equation (C-1)

for a given t. The solution of (C-3), known as "Kepler's
Equation", is iterated to convergence from

M-M.,
1

i+l 1 T T <os E{ ’ (C-10)
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which is conveniently written

e sin E. ~E. + M
i i

AE = —T-%cos E; (C-11)

and convergence established when AE is sufficiently small.

The initial value of E is EO = MO = M for small e.
Ife > .75, EO = (7+M) /2.

Expansion of (C-4) in trigonometric functions yields

Il

e sin ©

e sin w sin v - e cos w cos Vv
(C-12)

e cos 8§ e sin w cos v + e cos w sin Vv

where sin v and cos v are found by inversion of Equations (C-5):

1 2 ging
) B - e sin
sin v = 1 - e cos E
(C-13)
cos v = cos E - e
l - e cos E

Thus, given t, (C-11l) is used to calculate E, then
(C=13) to calculate sin v and cos v, and (C-12) to calculate 9.
The radius vector is given by (C-2).

+ Stellar Rotation

The stars are assumed to rotate with orbital periocd P.
The rotational motion is taken to be uniform, even for eccentric
orbits, so that the rotation will lag the revolution except on
the apse. Thus the rotation angle of the star, 6, is given by
Equation (C-4) with M substituted for wv:

e'=M—121+w (C-14)
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This produces a small angular deviation between the semi-majoxr
axis and the direction to the other star, as shown in Figure 22;

@ =6 - 90" = v - M. (C-15)

6' 1s the angle used in Appendix A.
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TABLE I
Accuracy of Double Integration
Using the Gauss Method
Number of Grid Points
4 x 4 6 X 6 10 x 10 16 x 16
error 0.60% 0.19% 0.046% 0.012%
with
respect
to
exact
value
mag. +.0036 +.0002 -.0002
error
with +.0009 +.0003 +.0001 | @ e
respect
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TABLE TII

Comparison with the Spherical Model

lTR oc
Phase Merrill Wood Phase Merrill Wood
.00 .5294 .52941 .50 . 6662 .66617
.01 .5464 .54640 .51 .6690 66902
.02 .6129 .61281 .52 . 7060 . 70588
.03 .6905 .69067 .53 .7586 . 75872
.04 .7672 .76717 .54 . 8151 .81511
.05 . 8380 . 83809 .55 .8698 . 86981
.06 .8994 . 89952 .56 .9185 .91857
.07 .9487 .94871 .57 .9582 .95829
.08 .9832 .98325 .58 .9864 .928640
.09 .9995 .99982 .59 .9996 .99986
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TABLE IIT

Parameters For Systems Discussed In Text

Elements "standard" VZ Hydrae EG Cepheii V1143 RU Ursa Phase
Cygni Minoris Shift
i 88.0° 89.25° 84.75° 87.02° 83.0° 73.1°
a 0.20 0.119 0.472 0.055 0.480 0.47
k 1.50 0.84 0.663 1.11 0.564 0.80
J 0.75 0.835 0.125 0.952 0.020 0.20
€a 0.994 1.0 0.914 1.0 0.953 0.95
€5 0.924 1.0 0.914 1.0 0.932 0.95
N 0.012 0 0.040 0 -.017 0
2N 0.038 0 0.060 0 0.038 0
Uy 0.6 0.6 0.6 0.68 0.89 0.6
ug 0.6 0.6 0.8 0.68 1.0 0.6
Va -4.0 0 -2.9 0 -4.6 ~4.,0
Vg -4.0 0 -5.2 0 -7.5 ~4.0
W 0 0 0 0 0.33 1.0
W 0 0 0 0 0.33 1.0
e sin w 0 0 0 . 4046 0 0
e cos w 0 0 0 .3609 0 0
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FIGURE 22. IN AN ECCENTRIC ORBIT, ROTATION AND REVOLUTION MAY NOT COINCIDE;

&

® MEASURES THE DISPARITY.






